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Abstract

We theoretically investigate the valley polarization in silicene with two parallel line defects due to Rashba spin-orbit
coupling (RSOC). It is found that as long as RSOC exceeds the intrinsic spin-orbit coupling (SOC), the transmission
coefficients of the two valleys oscillate with the same periodicity and intensity, which consists of wide transmission
peaks and zero-transmission plateaus. However, in the presence of a perpendicular electric field, the oscillation
periodicity of the first valley increases, whereas that of the second valley shortens, generating the corresponding wide
peak-zero plateau regions, where perfect valley polarization can be achieved. Moreover, the valley polarizability can
be changed from 1 to −1 by controlling the strength of the electric field. Our findings establish a different route for
generating valley-polarized current by purely electrical means and open the door for interesting applications of
semiconductor valleytronics.
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Introduction
Silicene, a low-buckled monolayer-honeycomb lattice of
silicon atoms, is a potentially attractive alternative to
graphene for valleytronic applications. The low-buckled
structure gives rise to relatively large spin-orbit coupling
(SOC) in silicene, and a sizable energy gap of approxi-
mately 1.55 meV is estimated at the Dirac points K and
K ′[1] Different from graphene, the low energy disper-
sion relation of silicene is parabolic rather than linear
form. Facilitated by the buckling structure, the band struc-
ture of silicene can be controlled by applying an elec-
tric field, and even a topological phase transition from
a quantum spin Hall insulator to a quantum Valley Hall
insulator may occur[2, 3] . Silicene has been successfully
synthesized on the surface of substrates such as Ag(111),
Ir(111), and ZrB2(0001)[4–6], and its free-standing stable
structure has also been predicted in several theoretical
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studies[7]. Most importantly, a room-temperature sil-
icene field-effect transistor (FET) has been successfully
observed experimentally[8]. The electric field tunabil-
ity and compatibility with existing silicon-based devices
make silicene a potential two-dimensional material for
application in next-generation valleytronics.
In two-dimensional (2D) materials such as graphene

and transition metal dichalcogenides(MoS2, etc.), grain
boundaries between two domains of material with dif-
ferent crystallographic orientations are ideal choices to
achieve the valley polarization and has attracted con-
siderable attention[9–14]. Recently, the extended line
defects (ELDs) in silicene have been extensively inves-
tigated according to first-principles calculations[15, 16],
and the 5-5-8 ELD (abbreviated as "line defect” in the
following) was found to be the most stable and most
readily formed structure. The spin and valley polarization
of the silicene line defect have been investigated theo-
retically[17–19]. The formation of a line defect can be
visualized as the stitching of the zigzag edges of two Si
grains by the adsorbed Si atoms, where either side of the
line defect shows pseudoedge-state-like behavior and the
grain boundaries of the zigzag edge act as the pseudo-
edge[16]. Obviously, such a lattice has mirror symmetry
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with respect to the line defect and the corresponding lat-
tice vectors in the “left” and “right” domains separated
by the defect are contrary[10, 11]. In such a line defect
with inversion domain boundary, the A/B sublattices and
valley indexes are exchanged upon crossing the defect.
The line defect is semitransparent for the quasiparticles
in graphene and a high valley polarization appears with a
high angle of incidence. The valley polarization is qy (the
electron’s group velocity along the y direction) dependent
across the line defect. For graphene, which has a linear
dispersion and constant group velocity, the valley polar-
ization can reach near 100% at large |qy| (corresponding
to high angle of incidence) while it decreases as |qy|
diminishes and vanishes as |qy| ∼ 0 [9, 14]. In contrast,
silicene has two different transmission characteristics
[17, 18]: firstly, the two valleys become indistinguishable
as the Fermi energy is close to the band edge due to the
parabolic dispersion relation, and secondly, the transmis-
sion is restrained because of the helical edge state flowing
inversely on both sides of the line defect, as shown in
Fig. 1c. Naturally, the system with SOC in a particular
RSOC is a promising candidate for efficient spin FET. The

RSOC generates an in-plane effective magnetic field and
induces the spin precession that is injected perpendicu-
lar to the plane of confinement. The spin polarization[20]
and inversion[21] have been investigated in gated silicene
nanoribbons. Theoretical calculations have shown that
the energy band of silicene can be significantly modulated
by RSOC [22, 23]. For instance, at a relative strong RSOC,
the spin-down (-up) band at the K(K ′) valley shifts up
while the other spin bands in the conduction band remain
unchanged. In consideration of the peculiar transmission
feature in the silicene line defect and the effect of RSOC in
silicene, the practical all-electric schemes for generating
valley-polarized carriers becomes feasible.
In this paper, we propose an efficient way to polarize

the Dirac fermions of different valleys using the silicene
double line defects, thus creating distinct valley polariza-
tion by utilizing the electric field in silicene. Our results
show that when the Fermi energy is near the bottom of
conduction band, the oscillation images of the transmis-
sion coefficients from two valleys, which comprise wide
oscillating peaks and nadirs, coincide as long as RSOC
exceeds the intrinsic SOC, while the presence of only a

Fig. 1 a Schematic diagram of the precession process of the states (K ,↑)(red sphere) and (K ′ ,↓)(blue sphere) through a silicene sheet with two
parallel line defects, where the blue (red) circle denotes the A(B) sublattice. The states (K ,↑) and (K ′ ,↓) circulate along the pseudo-edge, and the
RSOC as well as electric field is assumed to exist on the french grey region.W(W = 2) andWR(WR = 1) represent the width of the scattering region
in units of

√
3a. b The simplifed lattice model of the infnite silicene with a line defect, where θ = kya and the dotted rectangle corresponds to a

supercell. In the unit cell, the lattice points are specified by a set of indices (L, l). c The transmission for one spin state in the K(K ′) valley across line
defect with inversion domain boundaries. The insets show the orientation of the crystalline lattice in the two domains separated by the line defect
(dashed line). The thick/thin lines indicate that the transmission is restrained across the line defect due to the helical edge states flowing inversely
along the pseudoedge



Ren et al. Nanoscale Research Letters          (2019) 14:350 Page 3 of 8

single line defect cannot disperse the valley-dependent
electrons. When two parallel line defects are involved, the
oscillating nadirs evolve into zero-transmission plateaus,
and effective modulation of valley-dependent transport
can be realized by changing the oscillation periodicity
of the two Dirac valleys with a perpendicular electric
field, where the oscillation periodicity of the two valleys
increases and decreases and leads to the perfect valley
polarization at the wide peak-zero plateau corresponding
regions. In experiment, one can detect such pure valley
current by measuring the change of conductance with
the electric field. This phenomenon provides a different
route for effectively modulating the valley polarization in
silicene devices by utilizing the RSOC and electric fields.

Methods
Let us start from the schematic of a two-terminal silicene
line defect device, as shown in Fig. 1a, in which the spin
precession is illustrated to generate the valley-polarized
current due to the RSOC and electric field. It is supposed
that RSOC exists on one side of the line defect with width
W and WR in units of

√
3a, where a = 3.86Å is the

lattice constant of pristine silicene, as shown in Fig. 1a.
When the Fermi energy is located at the bottom of con-
duction band, the states (K ,↓)[(K ,↓) corresponds to a
state in valley K with ↓(down) spin] and (K ′,↑) are in the
gap due to the manipulation of energy band from RSOC.
The other two states, (K ,↑) and (K ′,↓), circulate along
the pseudo-edge because of the spin-momentum locking
characteristic from SOC[24], as shown in Fig. 1a. For a
definite spin state, it flows along the pseudo-edge with
opposite directions on both sides of the line defect which
can act as a filter and restrain the transmission across the
line defect, as depicted in Fig. 1c.
A lattice model in the tight-binding representation

is used to describe the line defect system with RSOC
as [17, 22]

H = t
∑

〈i,j〉α
c†iαcjα + τ2

∑

〈γ δ〉α
c†iyα,γ ciyα,δ + τ1

∑

〈i,γ 〉α
c†iαciyα,γ

+ i
tso
3
√
3

∑

〈〈i,j〉〉αβ

νijc†iασ z
αβcjβ + 
z

∑

iα
μic†iαciα

+ itR
∑

〈i,j〉αβ

c†iα(	σ × dij)zαβcjβ + H .c., (1)

where c†iα and c†iyα,γ /δ represent the electron creation oper-
ator with spin α at silicene site i and the line defect, respec-
tively, and 〈〉/〈〈〉〉 runs over all nearest-/next-nearest-
neighbor-hopping sites. The first three terms denote
nearest-neighbor hopping and the parameters t, τ1, and
τ2 denote various nearest-neighbor hopping energies in
the tight-binding model, as shown in Fig. 1b. The fourth
term is the effective SOC with the hopping parameter tso,

and νij = ±1 for counterclockwise (clockwise) hopping
between the next-nearest-neighboring sites with respect
to the positive z-axis. A theoretical investigation [16] has
shown that the two nearest Si atoms in the defect region
are relatively identical to those in the pristine region and
that all Si atoms remain in the sp2 − sp3 hybridized state.
Therefore, it is reasonable to set τ2 = τ1 = t. In the fifth
term, 
z is the staggered sublattice potential that arises
from an electric field perpendicular to the silicene sheet,
and μi = ±1 for the A(B) site. The last term represents
the extrinsic RSOC term where tR is the Rashba spin-orbit
hopping parameter. dij is the unit vector pointing from
site j to i, and 	σ = (σ x, σ y, σ z) in Eq. 1 is the vector of
real spin Pauli matrices. The RSOC arises from external
potential applied by either an electric gate, metal-atom
adsorption or a substrates [20, 25] which can dramati-
cally break the structure inversion symmetry of silicene.
Notably, the extrinsic RSOC originating from the electric
field is ignored because it is very weak.
The ELDs of silicene are shown in Fig. 1a, which

extends immensely along the y direction. The translational
symmetry of the lattice structure along the y direction
indicates that ky is a conserved quantity and that the
creation (annihilation) operators can be rewritten as fol-
lows, according to the Fourier transformation (the spin
index is ignored)[17]:

c†i =
∑

ky

cky,ix e
−2ikyiya, ci =

∑

ky

cky,ix e
2ikyiya,

c†iy,γ =
∑

ky,γ
c†ky,γ e

−2ikyiya, ciy,γ =
∑

ky,γ
cky,γ e

2ikyiya. (2)

Then, the Hamiltonian matrix in Eq. 1 is decoupled into
H = ∑

ky Hky , whereHky can be described in the following
form:

Hky = −
∑

i
ϕ
†
i,1T̂11ϕi,1 −

∑

i
ϕ
†
i,2T̂22ϕi,2

−
∑

i
ϕ
†
i,1T̂12ϕi,2 −

∑

i
=−1
ϕ
†
i,2T̂23ϕi+x̂,1

−ϕ
†
1̄,2T̂1̄0ϕ0 − ϕ

†
0 T̂01ϕ1,1 − ϕ

†
0 T̂00ϕ0 − ϕ

†
1̄,2T̂1̄1ϕ1,1 + h.c.,

(3)

where ϕ
†
i,l =

[
c†ky,i,l,A↑, c

†
ky,i,l,A↓, c

†
ky,i,l,B↑, c

†
ky,i,l,B↓

]
, i in the

set of index (i, l) represents the position of a supercell
(ī = −i), and l = 1 or 2 denotes different zigzag chains in
a supercell, as shown in the dashed rectangle in Fig. 1b. T̂ll′
represents the Hamiltonian matrix of each zigzag chain
(l = l′) in a supercell or the interplay between different
zigzag chains(l 
= l′).
It is noted that the two valleys K and K ′ are now cast

at [ 0,±π/3a] due to the insertion of the line defect. The
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transmission matrix of the η(η = K/K ′) valley is calcu-
lated using the generalized Landauer formula[26, 27],

T =
(
T↑↑

η T↑↓
η

T↓↑
η T↓↓

η

)
=

8∑

i,j=1

(
|t↑↑
ij,η|2 |t↑↓

ij,η|2
|t↓↑
ij,η|2 |t↓↓

ij,η|2
)
, (4)

where

t = 2
√−Im�LGr√−Im�R (5)

and

t↑↑
ij,η = t2(i−1)+1,2(j−1)+1

t↑↓
ij,η = t2(i−1)+1,2j (6)

t↓↑
ij,η = t2i,2(j−1)+1

t↓↓
ij,η = t2i,2j.

Here, −Im�L,R = − (
�r

L,R − �a
L,R

)
/2i are positive

semidefinite matrices with a well-defined matrix square
root, where �a

L,R = [
�r

L,R
]† are the retarded/advanced

self-energy of the left/right lead. The 16×16 submatrixGr

is the retarded Green’s function, which connects the first
and last supercells along the x direction and can be cal-
culated using the recursive Green’s function method. The
total transmission coefficients of the η valley are Tη =

T↑↑
η +T↑↓

η +T↓↑
η +T↓↓

η , and the spin polarization Ps and
valley polarization Pη can be given by

Ps = T↑↑
K + T↑↓

K − T↓↓
K − T↓↑

K + T↑↑
K ′ + T↑↓

K ′ − T↓↓
K ′ − T↓↑

K ′
TK + TK ′

,

Pη = TK − TK ′

TK + TK ′
.

Results and Discussion
In the calculations of the spin-dependent transmission
coefficients, we set τ2 = τ1 = t = 1 as the energy unit,
the SOC strength tso = 0.005t, and the Fermi energy Ef =
1.001tso, which is situated at the bottom of the conduction
band. The width of the scattering region is W = 1000 for
the single line defect and an additional width WR = 1000
is also taken into account for the two parallel line defects,
as shown in Fig. 1a.
Figure 2 depicts the spin-conserved/spin-flip transmis-

sion coefficients of valley η, Tsc
η /Tsf

η , as a function of
the incident angles α (a) and of the RSOC strength
tR (b–d). Figure 2a–c correspond to the case of the sin-
gle line defect, and (d) is for the case of the two parallel
line defects. It is shown that at a definite tR (for instance,
tR = 5tso as in Fig. 2a), the spin-dependent transmission
coefficients Tsc

K /Tsf
K are constant and independent of the

incident angles due to the parabolic dispersion relation,
as shown in Fig. 2a. Therefore, in the following calcula-
tions, we can use the incident angle α = 0 as an example.
For a weak tR, an oscillating phenomenon similar to that

Fig. 2 Spin-conserved and spin-flip transmission coefficients as functions of the incident angles α at tR = 5tso in a and as functions of the RSOC
strength tR in b–d, where a-c are for the single line defect and d is for the two parallel line defects, with 
z = 0.2tso in c
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in a two-dimensional electron gas [26, 27] appears due
to the Rashba splitting, as shown in the inset of Fig. 2b.
As tR increases (tR > tso), T↑↑

K and T↑↓
K have the same

oscillating periodicity and nearly the same magnitudes as
tR which consists of some oscillation peaks and nadirs,
while T↓↓

K /T↓↑
K tends to zero because the Fermi energy

lies in its gap, as shown in Fig. 2b. Thus, the total trans-
mission coefficient of K valley is mainly contributed by
the spin up state. In fact, the oscillation images of the two
valleys, K and K ′, coincide while the transmission coeffi-
cients of K ′ valley is mainly contributed by the spin-down
electrons.
In the presence of a perpendicular electric field, the val-

ley degeneracy is lifted, and the oscillating behaviors of
the two valleys differs: the oscillating periodicity of the K
valley increases, while that of the K ′ valley decreases, as
shown in Fig. 2c. However, it seems infeasible to filter one
conical valley state with only a single line defect because
the oscillating nadirs have a definite magnitude. Naturally,
one may consider the oscillating phenomenon with two
parallel line defects to further restrain the transmission,
as shown in Fig. 2d. Comparing Fig. 2b with d reveals
that the oscillation peak becomes narrow and acute, while
the oscillation nadir broadens and weakens, which forms
the zero-transmission platform. The space between two
neighboring oscillation peaks is fixed at 3.25tso, as charac-
terized by the two dashed lines in Fig. 2d.
To achieve a better valley filter effect, we concentrate

our attention on the effect of the perpendicular electric

field. The results of this effect are shown in Fig. 3. As dis-
cussed above, the oscillating periodicity of the two valleys
change in an opposite manner, and the original overlap-
ping oscillation peaks in Fig. 2d are relieved. Meanwhile,
the zero-transmission plateau broadens and narrows for
TK and TK ′ , respectively, as shown in Fig. 3a and b. At

z = 0.15tso, the space between the two neighboring
oscillation peaks develops into 3.6tso for TK , while it is
reduced to 3.1tso for TK ′ , as indicated by the two blue and
red dashed lines shown in Fig. 3a. As the electric field
strengthens, the space between the two neighboring oscil-
lation peaks continues to increase/decrease for TK /TK ′ ,
which is 5.4tso/2.8tso at 
z = 0.3tso, as shown in Fig. 3b.
The change in the oscillation periodicity will lead to the
corresponding regions of wide peak-zero plateau, where
perfect valley polarization with Pη = ±1 plateaus can
be realized, as shown in Fig. 3c and d. Simultaneously, it
is shown that high spin polarization Ps also arises when
Pη = ±1.
However, due to the uncontrollability of RSOC, it is still

difficult to detect such pure valley currents experimen-
tally, even though the RSOC induced in the line defect can
be greater than the intrinsic SOC. To conveniently probe
the pure valley current experimentally, we also investigate
the transmission coefficients and valley polarization as a
function of electric field, which can be continuously con-
trolled during an experiment. It is shown that the perfect
valley polarization with Pη = ±1 can emerge in a cer-
tain range of 
z and that it can change from Pη = 1

Fig. 3 The total transmission coefficients TK/TK ′ (a, b) and the spin/valley polarization (c, d) as a function of the RSOC strength tR for different
sublattice potentials. 
z = 0.15tso in a and c and 
z = 0.3tso in b and d; the other parameters are identical to those in Fig. 2d
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to Pη = −1 as the electric field increases, as shown in
Fig. 4a. For a definite tR (for instance tR = 7.2tso, as
indicated with a dashed line in Fig. 4a), the transmis-
sion coefficients TK/TK ′ oscillate with 
z, where the wide
transmission peaks of the K(K ′) valley correspond to the
zero-transmission plateaus of the K ′(K) valley. The total
transmission coefficients are basically contributed by one
valley as the electric field varies, and perfect valley polar-
ization can always occur around the maximal value of
TK/TK ′ , as shown in Fig. 4b. As the Fermi energy departs
from the band edge, the perfect valley polarization can
still survive even at Ef = 1.5tso, where the plateau rela-
tion can be well maintained, as shown in Fig. 4c. During
an experiment, one can analyze the valley-polarized elec-
trical currents from the left to right lead with an exper-
imentally measurable quantity such as the conductance,
which is proportional to the total transmission coeffi-
cient. The maximal conductance between two minimum
values (sometimes, they are zero) should be from one
valley. We can estimate the magnitude of the conduc-
tance according to the formula G = e2

h
∫ kF
−kF T

dky
2π/Ly =

e2
h

Ly
√

E2−t2so
2π�vF 2T[28], where Ly = 2a ≈ 7.72Å is the width

of silicene line defect, vF = 5.5 × 105m/s is the Fermi
velocity, � = h/2π is the reduced Planck constant with
h = 4.13566743 × 10−15eV · s, T = TK + TK ′ is the
total transmission coefficient and E is the on-site energy
of the incident electrons. Then, the conductance is about
G ≈

[
0.7T

√
E2 − t2so/eV

]
e2
h . It is also found that as the

on-site energy in the incident side is raised to E =
0.15t(t = 1.6eV ), the transmission coefficients of the two
valleys change only a little compared with Fig. 4c due
to spin and momentum conservation and the transmis-
sion peak-zero plateau relation maintains still, as shown
in Fig. 4d. In this case, the conductance is about G ≈
0.17T e2

h which is sizable and can be detectable in exper-
iment. The energy window to observe this phenomenon
is about 0.5tso(tso < E < 1.5tso) which is proportional to
tso. In experiment , it is not difficult to control the Fermi
energy near the band edge and the SOC gap can even be
radically increased to 44 meV by proximity with Bi(111)
bilayer[29] which can greatly improve the energy region
to detect the pure valley current. Moreover, the computa-
tional model can also be applicable to other low-buckled
counterparts of graphene, germanene[30],stanene and
MoS2[31–36] ,which have even larger band gaps[37, 38] as
well as the SOC strengths(SOC strength can reach 0.1eV
for stanene[38, 39]). In a real experiment, it is easy to real-
ize a strong RSOC which can exceed the intrinsic SOC by
breaking the in-plane mirror symmetry with the special
substrate[40]. Therefore, this scheme can be completely
feasible in experiment.

Conclusions
We have proposed an electrical method for generating a
valley-polarized current in silicene line defects. In sharp
contrast to the conventional electrical approaches that
are used to produce valley-polarized current, we explore

Fig. 4 Valley polarization a and TK/TK ′ (b–d) as functions of 
z and tR . tR = 7.2tso in (b–d), Ef = 1.5tso in c and d, and the on-site energy is E = 0.15t
in the left electrode in d; all other parameters are identical to those in Fig. 2d
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the RSOC, which is considered to tune the widely used
spin polarization in spin-polarized FETs. It is found that
the transmission coefficients of the two valleys oscil-
late with the same periodicity and intensity, which is
composed of transmission peaks and zero-transmission
plateaus. The valley-polarized current can be generated
by tuning the oscillating periodicity of the two valleys
with an electric field, which can destroy the symmetry
of the valley states and bring about the correspond-
ing transmission peak-zero plateau regions. Moreover,
we also provide a scheme to detect the pure valley cur-
rent in experiment and the results may shed light on
the manipulation of valley-polarized currents by electrical
means.
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